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Abstract
The study of the edge behaviour in the classical ensembles of Gaussian
Hermitian matrices has led to the celebrated distributions of Tracy–Widom.
Here we take up a similar line of inquiry in the non-Hermitian setting. We
focus on the family of N × N random matrices with all entries independent
and distributed as complex Gaussian of mean zero and variance 1

N
. This is

a fundamental non-Hermitian ensemble for which the eigenvalue density is
known. Using this density, our main result is a limit law for the (scaled)
spectral radius as N ↑ ∞. As a corollary, we get the analogous statement for
the case where the complex Gaussians are replaced by quaternion Gaussians.

PACS numbers: 02.10.Yn, 05.20.Gg

1. Introduction

Certainly some of the most striking results concerning the spectra of random matrices are
those around the limiting behaviour of the edge. The driving force behind this effort has
of course been Tracy–Widom who obtained the convergence in distribution of the scaled
largest eigenvalue in the Gaussian orthogonal, unitary and symplectic ensembles [13, 14] and
showed that the limit laws have exact expression in terms of Painlevé II. We also mention
the work of Soshnikov [12] who has shown a type of universality at the edge for Wigner
matrices with entries respecting Gaussian conditions on growth of their moments. More
recently, Johnstone [10] has repeated the Tracy–Widom analysis for the Laguerre ensemble
(or Gaussian covariance matrices)1.

However, this style of question seems to have been largely ignored for the case of non-
Hermitian random matrices. There are a class of ensembles with complex spectra for which
the limiting density of states is understood to be supported on some set E∞ in the complex
1 It is not our intent to slight the huge body of work connecting the largest eigenvalue of GUE etc and problems in
combinatorics and the statistical mechanics of growth models, but rather to keep the introduction brief.
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plane. Understanding the edge for such an ensemble entails identifying εN ↓ 0 for N ↑ ∞
for which

lim
N↑∞

Prob[all eigenvalues lie in E∞ × (1 + εN)]

exists and is non-trivial. That is, one wishes to measure the distributional distance of the
spectral point farthest from its limiting support as N ↑ ∞. The purpose of this paper is to
hopefully draw some attention to these problems and to demonstrate that, in the particular case
taken up here, elementary probability arguments lead to rather precise information concerning
the spectral edge.

We will mainly consider the spectrum of perhaps the most basic non-self-adjoint random
matrix ensemble. In particular, let MN = [

MN
ij

]
be the N × N random matrix whose entries

are independent complex-centred Gaussians of variance N−1. The exact eigenvalue density
was derived by Ginibre [8]:

PN(z1, z2, . . . , zN ) = 1

ZN

e−N
∑N

k=1 |zk |2
∏

1�j<k�N

|zj − zk|2 (1)

for zk = xk +
√−1yk and ZN the appropriate normalizer. The well-known circular law (see [1]

or the computation of Silverstein appearing in [9]) states that 1
N

∑N
k=1 δzk

converges weakly to
the uniform measure on the unit disc D = {|z| � 1}. Therefore, identifying an N-dependent
disc which scales to D and captures all the eigenvalues is equivalent to studying the spectral
radius. Our main result is the following.

Theorem 1. Let RN be the spectral radius for the matrix MN. That is, RN = max1�k�N |zk|.
Then,

lim
N→∞

PN

[√
4NγN

(
RN − 1 −

√
γN

4N

)
� x

]
= exp[−exp(−x)] (2)

in which γN = log N
2π

− 2 log log N . In other words, RN is well approximated by

RN � 1 +

√
γN

4N
− 1√

4NγN

log Z

with Z an exponential random variable of mean 1.

Perhaps the first thing the reader will note in the above statement is that there is none of
the integrable phenomena present which has caused so much excitement around the work of
Tracy–Widom. That is, the appropriate scaling is somewhat complicated while the limiting
law coming out on the right is fairly simple; there is no Painlevé transcendent floating about.
Second, a look at (2) indicates that the largest eigenvalue tends (with large probability) to lie
outside the unit disc as N ↑ ∞. It is interesting to contrast this with the known cases for real
spectra: the limit distributions of the maximal eigenvalue in G(O/U/S)E (after subtracting
off the edge and scaling by an increasing factor) all have negative mean.

Next we wish to point out that for the present ensemble we may also obtain almost sure
information about the spectral edge. The result shows that in fact 1 � RN ↓ 1 with probability
1 as N ↑ ∞ and more.

Theorem 2. We have the following almost sure statement for the behaviour of RN. For any
δ > 0 and M < ∞,

Prob

[
1 +

M√
N

� RN � 1 + (2 + δ)

√
log N

N
,N ↑ ∞

]
= 1. (3)
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The almost sure convergence of the absolute value of the largest eigenvalue to 1 does
not follow from the weak convergence of the empirical spectral distribution embodied in
the circular law. On the other hand, the circular law coupled with the techniques of [7]
(which deals with general real entried non-Hermitian matrices) will furnish a proof of
Prob[limN↑∞ RN = 1] = 1. The point is that (3) contains more detailed information for
the present Gaussian ensemble. For some impressive results on the almost sure convergence
of extremal eigenvalues to their predicted values in the Hermitian case, we refer the reader to
[3] (general Wigner matrices) and [2] (general sample-covariance matrices).

Theorems 1 and 2 should be compared to the classical result of Mehta ([11], 15.1.35)
who studied the behaviour of the one-point function at the edge. In particular, with
pN(r) = Prob[|zk| = r for some k], he has shown: with s > 0 and of order 1,

pN

(
1 +

s√
N

)
� 1

π
− pN

(
1 − s√

N

)
� e−s2

s
√

π
(4)

to leading order as N ↑ ∞. This gives information on the sharpness of the edge from the point
of view of the average eigenvalue and identifies the characteristic distance as roughly order
1/

√
N . The present results strengthen this by providing the probability that any eigenvalue is

near the edge. Note that (4) can also be found in [6] along with the corresponding two-point
function in the vicinity of the unit circle.

For completeness we mention that our analysis carries over exactly to the ensembles MN
Q

in which the entries are taken to be independent quaternion Gaussians.

Corollary 1. Let R
Q

N denote the spectral radius of the non-Hermitian matrix with independent
quaternion Gaussian entries. The statements of theorems 1 and 2 remain valid with R

Q
N in

place of RN so long as exp[−√
2 exp(−x)] replaces the right-hand side of (2).

As has been pointed out to us, the result of corollary 1 is not so simple. In the quaternion
case, the eigenvalues tend to avoid the real axis; one loses the rotation invariance of the
complex ensemble. Despite this difference, the eigenvalue of largest modulus, regardless of
whether it is near or far from the real axis, scales and is distributed identically (up to a trivial
constant factor) as in the complex case. It would be nice to know if the real case follows suit,
but that density is harder to deal with (see [5]).

In the next section, we describe a different non-Hermitian ensemble for which there is
a reason to believe that the edge behaviour will have more in common with the well-known
GUE type results. After this short expository effort, the proofs of theorems 1 and 2 along with
their corollary are provided in section 3.

2. Other ensembles with complex spectra

Here we simply remind the reader of another class of non-Hermitian ensemble for which we
feel a study of the edge behaviour would be interesting—though we have been unable to do
so yet. Consider the random matrix

MN
τ = AN +

√−1

√
1 − τ

1 + τ
BN

in which AN and BN are independent copies of an N × N GUE and the parameter τ residing
in [0, 1] allows MN

τ to interpolate between GUE (τ = 1) and the ensemble central to our work
(τ = 0). Again the eigenvalue density is known:

Pτ
N (z1, z2, . . . , zN ) = 1

Zτ
N

exp

[
− N

1 − τ 2

N∑
k=1

(|zk|2 − τRez2
k

)] ∏
1�j<k�N

|zj − zk|2
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and the limiting density of states is the uniform measure on the ellipse with semi-major/minor
axes 1 + τ and 1 − τ .

It turns out that, for τ > 0, the family of Hermite polynomials {Hk(z)}, appropriately
scaled and normalized, is orthonormal with respect to the weight wN,τ (z) =
exp

[ − N
1−τ 2 (|z|2 − τRez2)

]
in the complex plane2. This allows us to write the probability that

all the eigenvalues lie within a certain set E as the Fredholm determinant of a kernel operator
acting on the exterior of that set. Experts will recognize that this is the all-important opening
move in the work of Tracy–Widom. The presence of this familiar structure is encouraging.
However, difficulties soon arise from two fronts. First, with the needed scaling the Hermite
polynomials no longer satisfy the Christoffel–Darboux formula which clouds the rigorous
analysis of the kernel. Second, there is the basic non-local nature of the problem; strong
asymptotics are needed near the whole boundary of the limit ellipse as opposed to a single
boundary point as in the Hermitian case. Still, we hope to return to this matter in the future.

3. Proofs

Proof of theorem 1. The basic formula that is the starting point of our analysis is, of course,
found in Mehta’s book [11]. Computing the probability that RN is less than say a entails
integrating (1) over {|zk| � a : 1 � k � N}. Noting that the integrand is symmetric in all
zk and that

∏ |zj − zk|2 = �(z)�(z̄) with � the usually Vandermonde determinant, one may
apply row/column reductions inside the integral to find

PN(a) = PN

[
max

1�k�N
|zk| � a

]

=
∫

|z1|�a

· · ·
∫

|zN |�a

e−N
∑N

k=1 |zk|2 det
[
z̄i−1
i z

j−1
i

]
1�i,j�N

dx1 dy1 · · · dxN dyN

= det

[∫
|z|�a

e−N |z|2 z̄izj dx dy

]
0�i,j�N−1

=
N−1∏
k=0

Nk+1

�(k)

∫ a2

0
e−Nrrk dr =

N−1∏
k=0

P

[
1

N

N−k∑
�=1

X� � a2

]
(5)

for {Xk} a sequence of independent exponential random variables of parameter one and P their
corresponding measure. Note that we are able to perform the integration in line 2 since each
row in the determinant depends on a distinct variable zk . Also,

∫ a

0 e−N |z|2 z̄izj dx dy = 0 if
i �= j , leaving just a diagonal determinant to evaluate in the last line.

From the law of large numbers, one sees immediately why PN(a) → 0 or 1 if a is either
strictly smaller or strictly greater than 1. To identify the appropriate scaling about a = 1 we
write a = 1 + 1

2
√

N
fN(x) with fN an increasing function in both x and N. With this, the factors

in the product (5) are more easily analysed if written in the form

P

[
1

N

N−k∑
�=1

X� � a2

]
= P

[
1√
N

N−k∑
�=1

(X� − 1) � fN(x) +
1

4
√

N
f 2

N(x) +
k√
N

]

= P

[
1√
N

N−k∑
�=1

(X� − 1) � φN(x) +
k√
N

]
≡ pk. (6)

2 See [15] for this fact and an interesting treatment of this ensemble in a different vein.
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The exact form of fN (or φN(x)) is just what is to be determined. Certainly fN = o(
√

N),
but we will assume from the start that fN(x) ↑ ∞ with N ↑ ∞ for x fixed. Indeed, now the
central limit theorem (CLT) explains why PN

(
1 + 1√

N
M

) → 0 for any constant M as N ↑ ∞;
a comment we will return to in the proof of theorem 2.

Next, again by the CLT and a glance at (6) one expects the main contribution to stem from
that part of the product with k not more than order

√
N . Certainly the probability in question

is bounded by any truncated product, that is, for whatever positive δN less than 1,

PN

(
1 +

1

2
√

N
fN(x)

)
�

NδN∏
k=0

pk.

In addition, for x bounded from below, the opposite inequality holds up to multiplicative errors
of order 1 − O(1/N) if we take δN =

√
2N−1 log N . The conclusion is drawn from the

following string of inequalities: for 0 < α < 1,

N−1∏
k=NδN

P

(
1√
N

N−k∑
�=1

(X� − 1) � φN(x) +
k√
N

)

�
N−1∏

k=NδN

(
1 − P

[
N−K∑
�=1

X� �
√

NφN(x) + N

] )

�
N−1∏

k=NδN

(
1 − e−α

√
NφN(x)E[eαX1 ]N−k

)

�
N−1∏

k=NδN

(
1 − exp

[
−N

{
α

(
1 +

k

N

)
+ log(1 − α)

}
− α

√
NφN(x)

])

�
N−1∏

k=NδN

(
1 − exp

[
−N

{
k

N
− log

(
1 +

k

N

)}])
�

(
1 − e−Nδ2

N

)N

.

The last line stems from the positivity of φN(x) and setting α = 1 − (1 + k/N)−1 in order to
maximize the remaining exponent.

Therefore, we have that

logPN

(
1 +

1

2
√

N
fN(x)

)

=
√

2N log N∑
k=1

log P

[
1√

N − k

N−k∑
�=1

(X� − 1) �
√

N

N − k

(
φN(x) +

k√
N

)]
(7)

uniformly in N and x for x > −∞ and N ↑ ∞. The individual summands may be then analysed
by the use of the classical Edgeworth expansion; the latter providing uniform corrections to
the CLT. Let pM(t) denote the density of the random variable 1√

M

∑M
�=1(X� − 1) at t. The

needed statement (see, e.g., [4], corollary 19.4) is that

sup
−∞<t<∞

∣∣∣∣∣pM(t) − e−t2/2

√
2π

− ρ1(t)
e−t2/2

√
M

√
2π

− ρ2(t)
e−t2/2

M
√

2π

∣∣∣∣∣ = O(M−3/2) (8)

where ρ1(t) = c1t
3 and ρ2(t) = c2t

4 + c3t
6 with constants c1, c2, c3 independent of M and

expressed in terms of the moments of X1.
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With the help of (8) we find that, for x restricted as in |x| � L for some large positive L
and any KN ↑ ∞ faster than sup−L�x�L φN(x)

log P

[
1√

N − k

N−k∑
�=1

(X� − 1) � φN(x) +
k√
N

]

= log

(∫ φN(x)+ k√
N

−KN

e−t2/2

√
2π

dt

)
+ O

(
1√
N

sup
|c|�L

φ2
N(c) e−φ2

N(c)/2

)

+ O

(
1

N

)
+ O

(
KN

N3/2

)
+ O

(
e− 1

2

√
NKN

)
. (9)

Here we have made use of the fact that k = o(N). Instead of compacting the error terms, we
write the above in the present form so that the reader may check their origin. The last stems
from restricting the probability on the left to the set where 1√

N−k

∑N−K
�=1 (X� − 1) � −KN .

With this precaution the bound (8) is integrated over −KN � t � φN + k/
√

N producing the
first three error terms. Afterwards, one may extend the lower limit of integration in the leading
term on the right-hand side of (9) from −KN down to −∞.

Substituting the estimate (9) into (7) shows that we should interpret the leading order sum
as the Riemann integral it approximates. That is, we should take
√

2N log N∑
k=1

log

[∫ φN(x)+ k√
N

−∞

e−t2/2

√
2π

dt

]
�

√
N

∫ φN(x)+
√

2 log N

φN(x)

log

[∫ t

−∞

e−s2/2

√
2π

ds

]
dt (10)

which may be done subject to an additional error bounded above by

√
N

√
2N log N∑
k=1

∫ φN + k+1√
N

φN + k√
N

log

(
1 +

∫ s

φN + k√
N

e−t2/2 dt

)
ds � C

√
log N e−φ2

N/2.

Now one checks that the upper limit of integration in (10) may be extended to +∞ from which
one sees that φN = o(

√
log N), and that KN may be chosen to be of the order of log N . The

conclusion is that: with x bounded in the same manner as before:

logPN

(
1 +

1

2
√

N
fN(x)

)
=

√
N

∫ ∞

φN(x)

log

[∫ t

−∞

e−s2/2

√
2π

ds

]
dt + EN (11)

where

EN = O

((
log N√

N

)
∨

(√
log N sup

|c|�L

φ2
N(c) e−φ2

N(c)/2

))
. (12)

Finally, the scaling function fN(x) and limit law, the distribution function of which we
denote by F∞(x), are identified by requiring that

lim
N↑∞

√
N

∫ ∞

φN(x)

log

[
1 −

∫ ∞

t

e−s2/2 ds√
2π

]
dt = log F∞(x) (13)

pointwise in x. Note that as the right-hand side is to represent the logarithm of a single
distribution function, fN(x) must be chosen so that whatever comes out of the limit must
increase from −∞ to 0 as x ranges between ∓∞. The function fN(x) is, of course, further
restricted by the error term (12) being o(1) for N ↑ ∞.
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Proceeding, one will note that with 0 < fN ↑ ∞ condition (13) is the same as

log F∞(x) = − lim
N↑∞

√
N

2π

∫ ∞

φN(x)

∫ ∞

t

e−s2/2 ds dt ×
(

1 + O

(∫ ∞

φN (x)

e−s2/2 ds√
2π

))

= − lim
N↑∞

√
N

2π

∫ ∞

φN(x)

1

t
e−t2/2 dt ×

(
1 + O

(
1

φN(x)

))

= − lim
N↑∞

√
N

2π

1

f 2
N(x)

exp

[
−1

2
f 2

N(x)

]
× (1 + o(1)) (14)

as φN = fN × (
1 + fN√

4N

)
. Now choosing

f 2
N(x) = 2 log

(
ex

√
N/2π

log N

)
we find that uniformly on compact sets in x:

lim
N↑∞

logPN

[
RN � 1 +

√
1

2N

(
log

√
N/2π

log N
+ x

)1/2
]

= − lim
N↑∞

(√
N

2π

1

f 2
N(x)

exp

[
−1

2
f 2

N(x)

]

×
(

1 + O

(
1√

log N

))
+ O

(
(log N)3

√
N

))

= −exp[−x]. (15)

That (15) entails an equivalent limit theorem to that in statement (2) follows from standard
properties of distribution functions. �

Proof of theorem 2. This is a reprise of the type of estimates employed above. For the
left-hand part of the statement in (3), recall (6) and note the inequality

PN

[
RN � 1 +

M√
N

]
�

√
N∏

k=1

P

[
1√
N

N−k∑
�=1

(X� − 1) � 2M

]
.

Now each term in the product converges to 1√
2π

∫ 2M

−∞ exp −c2/2 dc < 1, and by the Berry–
Essen theorem ([4], theorem 12.4) the rate of convergence is bounded by a constant multiple
of N−1/2. Therefore, there exists some positive δ for which

PN

[
RN � 1 +

M√
N

]
� (1 − δ)

√
N. (16)

The basic inequality for the rest of (3) requires estimating, from above, the probability
that any eigenvalue lies outside the disc of radius 1 + αN . We have

1 − PN [RN � 1 + αN ] � 1 −
N−1∏
k=0

(
1 − P

[
1

N

k∑
�=0

X� � 1 + αN

])

� 1 − [1 − exp(−NαN + N log(1 + αN)]N � 1 −
[

1 − exp

(
−1

2
Nα2

N

)]N

� 1 − exp

[
− 1

N1+δ/2

]
� 1

N1+δ/2
(17)
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holding for the choice αN = (2 + δ)
√

N−1 log N . Given (16) and (17) the proof is completed
by an application of the first Borel–Cantelli lemma. �

Proof of corollary 1. For Gaussian quaternion components, the work by Mehta ([11], p 302)
contains an exact eigenvalue density PQ

N as well as, what is needed here, an expression for
averages of test functions of the form

∏N
k=1 h(zk). With things normalized properly,∫

R2
· · ·

∫
R2

[
N∏

k=1

h(xk, yk)

]
dPN

Q(dx1dy1, . . . , dxN dyN)

= π−N

N∏
k=1

N2k

(2k)!
[det[ψij (h)]0�i,j�2N−1]

1
2 (18)

where the entries of the determinant are defined by

ψij (h) =
∫

R2
e−2N |z|(z − z̄)h(z)(zi z̄j − zj z̄i) dx dy.

Now, if h(z) = 1|z|�a we find that ψij = ±π
∫ a

0 e−2Nr2
r2j+2 dr if i − j = ∓1 and ψij = 0

otherwise. This along with (18) implies that

PQ
N

(
max

1�k�N
zk � a

)
=

N−1∏
k=0

P

(
1

2N

2(N−k)∑
�=1

X� � a2

)

where again X� are independent exponentials of mean 1. From here it is straight forward that
the proofs of theorems 1 and 2 may be repeated almost verbatim save for the adjustment of a
few constants. �
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